Lesson Plan

Name of the Faculty	:	Mr. MAHAVIR
Discipline	:	Electrical Engineering
Semester	:	5th
Subject	:	Electrical Power-I
Lesson Plan duration	:	15 weeks (07.09.2020 to 24.12.2020)
Work load per week	:	Lecture-04 and Practical-00

Week	Theory				
	Lecture	Торіс			
	day	(including Assignments and Test)			
	1 st	Subject introduction and overview			
1 st	2 nd	Unit-1 Power Generation:			
		Main resources of energy, conventional and Non-Conventional			
	3 rd	Different types of power stations- Thermal Power plant, its construction and			
		working, its advantages, disadvantage, selection of site			
	4 th	Hydro Power plant, its construction and working, its advantages, disadvantage,			
		selection of site			
	5 th	Revision & discussion of above two plants			
2 nd	6 th	Gas Power plant, its construction and working, its advantages, disadvantage,			
		selection of site			
	7 th	Diesel Power plant, its construction and working, its advantages, disadvantage,			
		selection of site			
	8 th	Continue the previous topic			
	9 th	Nuclear Power plant, its construction and working, its advantages, disadvantage,			
		selection of site			
3 rd	10 th	Continue the previous topic & Comparison of different types of Plants			
	11 th	Importance of non-conventional sources of energy in the present scenario. Brief			
		details of solar energy, bio-energy, wind energy			
	12 th	Revision and Assignment			
	13 th	Unit-2 Economics of Generation:			
		Fixed and running cost, load estimation, load curves			
4 th	14 th	Demand factor, load factor, diversity factor			
	15 th	Power factor and their effect on cost of generation & simple problems			
	16 th	Base load and peak load power stations			
	17 th	Inter-connection of power stations and its advantages			
5 th	18 th	Concept of regional and national grid.			
	19 th	Revision & Assignment			
	20 th	Unit-3 Transmission Systems:			
		Layout of transmission system			
	21 st	Selection of voltage for H.T and L.T lines			
6 th	22 nd	Advantages of high voltage for Transmission both AC and DC			
	23 rd	AC versus DC for power transmission			
	24 th	Conductor material and sizes from standard tables			

	25 th	Types of supports and types of insulators
7th	25 26 th	Types of conductors
701	20 27 th	Selection of insulators, conductors, earth wire and their accessories
-	27 28 th	Transposition of conductors
	20 29 th	String efficiency of suspension type insulators, Bundle Conductors
8 th	30 th	Revision & discussion
0	31 st	
-	31 st 32 nd	Importance of sag and calculation of sag
	-	Effects of wind and ice related problems
oth	33 rd	Indian electricity rules pertaining to clearance
9 th	34 th	Calculation of resistance, inductance and capacitance without derivation in a.c.
-	arth	transmission line
-	35 th	Voltage regulation and concept of corona.
	36 th	Effects of corona and remedial measures
4 oth	37 th	Transmission Losses
10 th	38 th	Revision & Assignment
	39 th	Unit-4 Distribution System:
-	th	Lay out of HT and LT distribution system
	40 th	Constructional feature of distribution lines and their erection.
46	41 st	LT feeders and service mains; Simple problems on AC radial distribution system
11 th	42 nd	Determination of size of conductor
	43 rd	Preparation of estimates of HT and LT lines (OH and Cables).
	44 th	Constructional features of LT (400 V) and HT (11 kV) underground cables
	45 th	advantages and disadvantages of underground system with respect to
		Overhead system.
12 th	46 th	Losses in distribution system
	47 th	Faults in underground cables-determine fault location by Blavier Test
	48 th	Murray Loop Test, Varley Loop Test
	49 th	Revision & Assignment
13 th	50 th	Unit-5 Substations:
		Brief idea about substations; outdoor grid sub-station 220/132 KV
	51 st	66/33 KV outdoor substations
	52 nd	Pole mounted substations
	53 rd	Indoor substation
14 th	54 th	Layout of 33/11 kV/400V distribution substation
	55 th	Various auxiliaries and equipment associated with 33/11 kV/400V distribution
		substation
	56 th	Revision & Assignment
	57 th	Unit-6 Power Factor:
		Concept of power factor and Reasons and disadvantages of low power factor
15 th	58 th	Methods for improvement of power factor using capacitor banks, VAR
	59 th	Static Compensator (SVC)
	60 th	Revision & Assignment